skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Costine, Anna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 5, 2026
  2. Ni-Cr based super-alloys have exceptional corrosion resistance, which is further improved with Mo alloying. The correlation between passive layer performance and composition was studied to gain a deeper mechanistic understanding of the role of Mo by comparing the behavior of Ni-22Cr to Ni-22Cr-6Mo (wt%) alloys. The passive layers were formed using galvanostatic holds to create fast and slow growth conditions using high and low current densities. A potentiostatic hold was added to initiate exposure aging. The passive film was characterized using electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), atomic emission spectro-electrochemistry (AESEC), and X-ray photoelectron spectroscopy (XPS). Combined electrochemical and XPS characterization offered insight in cation concentrations and stratification, bonding states (oxide, hydroxide), and their modulation as a function of electrochemical conditions and performance. Most importantly: (i) Mo addition enhanced Cr(III) bound in oxide, (ii) fast growth conditions resulted in less corrosion resistant films, and (iii) exposure aging increased Cr-enrichment and reduced stratification of Mo-cations. The correlation between passive film performance and Cr, Ni, and Mo oxidation states, bonding, oxide-hydroxide contributions, and stratification is discussed. Generally accepted correlations, such as Cr-cation concentration and performance of the passive layer, have to be reexamined in order to account for the complex chemical make-up of the passive layer. 
    more » « less